
Debnath Nonlinear PDEs 3e: Chapter 1 - Exercise 19 Page 1 of 4

Exercise 19

Solve the steady-state surface wave problem (Debnath 1994, p. 47) on a running stream of
infinite depth due to an external steady pressure applied to the free surface. The governing
equation and the free surface conditions are

φxx + φzz = 0, −∞ < x <∞, −∞ < z < 0, t > 0,

φx + Uφx + gη =
P

ρ
δ(x) exp(εt),

ηt + Uηx = φz

}
on z = 0 (ε > 0),

φz → 0 as z → −∞.

where U is the stream velocity, φ(x, z, t) is the velocity potential, and η(x, t) is the free surface
elevation. [TYPO: This should be φt!]

Solution

In order for the first boundary condition to be dimensionally consistent, the first term must be φt,
similar to the equation below it for η. The PDEs for φ and η are defined for −∞ < x <∞, so we
can apply the Fourier transform to solve them. We define the Fourier transform with respect to x
here as

Fx{φ(x, z, t)} = Φ(k, z, t) =
1√
2π

ˆ ∞
−∞

e−ikxφ(x, z, t) dx,

which means the partial derivatives of φ with respect to x, z, and t transform as follows.

Fx
{
∂nφ

∂xn

}
= (ik)nΦ(k, z, t)

Fx
{
∂nφ

∂zn

}
=
dnΦ

dzn

Fx
{
∂nφ

∂tn

}
=
dnΦ

dtn

Take the Fourier transform of both sides of the first PDE.

Fx{φxx + φzz} = F{0}

The Fourier transform is a linear operator.

Fx{φxx}+ Fx{φzz} = 0

Transform the derivatives with the relations above.

(ik)2Φ +
d2Φ

dz2
= 0

Expand the coefficient of Φ.

−k2Φ +
d2Φ

dz2
= 0

Bring the term with Φ to the right side.

d2Φ

dz2
= k2Φ
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We can write the solution to this ODE in terms of exponentials.

Φ(k, z, t) = A(k, t)e|k|z +B(k, t)e−|k|z

We can use the last boundary condition here to figure out one of the constants. Taking the
Fourier transform with respect to x of both sides of it gives us

Fx
{

lim
z→−∞

∂φ

∂z

}
= Fx{0}.

Bring the transform inside the limit.

lim
z→−∞

Fx
{
∂φ

∂z

}
= 0

Transform the partial derivative.

lim
z→−∞

dΦ

dz
= 0

Differentiating Φ with respect to z, we obtain

dΦ

dz
(k, z, t) = A(k, t)|k|e|k|z −B(k, t)|k|e−|k|z.

In order for the boundary condition to be satisfied, we require that B(k, t) = 0.

Φ(k, z, t) = A(k, t)e|k|z (1)

Take the Fourier transform with respect to x of the boundary conditions at z = 0 now.

Fx{φt + Uφx + gη} = Fx
{
−P
ρ
δ(x)eεt

}
Fx{ηt + Uηx} = Fx{φz}

Use the linearity property.

Fx{φt}+ UFx{φx}+ gFx{η} = −P
ρ
eεtFx {δ(x)}

Fx{ηt}+ UFx{ηx} = Fx{φz}

Transform the partial derivatives.

dΦ

dt
+ U(ik)Φ + gH = − P

ρ
√

2π
eεt (2)

dH

dt
+ U(ik)H =

dΦ

dz
(3)

Solve equation (2) for H.

H(k, t) = −1

g

(
P

ρ
√

2π
eεt + UikΦ +

dΦ

dt

)
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Take a derivative of this with respect to t.

dH

dt
= −1

g

(
Pε

ρ
√

2π
eεt + Uik

dΦ

dt
+
d2Φ

dt2

)
Use equation (1) to write expressions for dΦ/dt and d2Φ/dt2.

dΦ

dt
=
dA

dt
e|k|z → dΦ

dt

∣∣∣∣
z=0

=
dA

dt

d2Φ

dt2
=
d2A

dt2
e|k|z → d2Φ

dt2

∣∣∣∣
z=0

=
d2A

dt2

The equations for H and dH/dt become (noting that Φ(k, 0, t) = A(k, t))

H(k, t) = −1

g

(
P

ρ
√

2π
eεt + UikA+

dA

dt

)
dH

dt
= −1

g

(
Pε

ρ
√

2π
eεt + Uik

dA

dt
+
d2A

dt2

)
Plug these two equations into equation (3) to get an ODE for A(k, t). The right side is obtained
by differentiating equation (1) with respect to z and then setting z equal to zero.

−1

g

(
Pε

ρ
√

2π
eεt + Uik

dA

dt
+
d2A

dt2

)
− Uik

g

(
P

ρ
√

2π
eεt + UikA+

dA

dt

)
= |k|A

Multiply both sides by −g, expand the left side, and combine like-terms.

d2A

dt2
+ 2Uik

dA

dt
− k2U2A+

P (Uik + ε)

ρ
√

2π
eεt = −g|k|A

Bring the term with eεt to the right side and bring g|k|A to the left.

d2A

dt2
+ 2Uik

dA

dt
+ (g|k| − k2U2)A = −P (Uik + ε)

ρ
√

2π
eεt

Since we only care about the steady state, we only need a particular solution to this ODE. The
inhomogeneous term is eεt, so the particular solution is of the form ceεt. We determine the
constant c by plugging this form into the ODE and solving the resulting equation for it. Doing so
yields

A(k, t) = − P (Uik + ε)

ρ
√

2π[g|k| − (kU − iε)2]
eεt,

so from equation (1) we know what Φ(k, z, t) is. Factor i from the numerator.

Φ(k, z, t) =
iPeεt

ρ
√

2π

Uk − iε
(Uk − iε)2 − g|k|

e|k|z (4)

To obtain φ(x, z, t), take the inverse Fourier transform of Φ(k, z, t). It is defined as

F−1{Φ(k, z, t)} = φ(x, z, t) =
1√
2π

ˆ ∞
−∞

Φ(k, z, t)eikx dk.
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Therefore,

φ(x, z, t) =
iPeεt

2πρ

ˆ ∞
−∞

Uk − iε
(Uk − iε)2 − g|k|

e|k|z+ikx dk.

To solve for H, use equation (3). Differentiate equation (4) with respect to z and set z equal to
zero to obtain the right side.

dH

dt
+ UikH =

iP |k|
ρ
√

2π

Uk − iε
(Uk − iε)2 − g|k|

eεt

As explained before, we only care about the steady state, so we only need a particular solution of
this equation. The inhomogeneous term is eεt, so the particular solution will have the form deεt.
Substitute this form into the ODE for H to get an equation for the constant d. The particular
solution is

H(k, t) = − P |k|√
2πρ[g|k| − (Uk − ik)2]

eεt.

Now that we have H(k, t), we can get η(x, t) by taking the inverse Fourier transform of it.
Therefore,

η(x, t) =
Peεt

2πρ

ˆ ∞
−∞

|k|eikx

(Uk − iε)2 − g|k|
dk.
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