Exercise 19

Solve the steady-state surface wave problem (Debnath 1994, p. 47) on a running stream of infinite depth due to an external steady pressure applied to the free surface. The governing equation and the free surface conditions are

$$
\begin{aligned}
& \phi_{x x}+\phi_{z z}=0, \quad-\infty<x<\infty,-\infty<z<0, t>0, \\
& \left.\begin{array}{l}
\phi_{x}+U \phi_{x}+g \eta=-\frac{P}{\rho} \delta(x) \exp (\varepsilon t), \\
\eta_{t}+U \eta_{x}=\phi_{z} \\
\phi_{z} \rightarrow 0 \text { as } z \rightarrow-\infty .
\end{array}\right\} \quad \text { on } z=0(\varepsilon>0),
\end{aligned}
$$

where U is the stream velocity, $\phi(x, z, t)$ is the velocity potential, and $\eta(x, t)$ is the free surface elevation. [TYPO: This should be ϕ_{t} !]

Solution

In order for the first boundary condition to be dimensionally consistent, the first term must be ϕ_{t}, similar to the equation below it for η. The PDEs for ϕ and η are defined for $-\infty<x<\infty$, so we can apply the Fourier transform to solve them. We define the Fourier transform with respect to x here as

$$
\mathcal{F}_{x}\{\phi(x, z, t)\}=\Phi(k, z, t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-i k x} \phi(x, z, t) d x
$$

which means the partial derivatives of ϕ with respect to x, z, and t transform as follows.

$$
\begin{aligned}
& \mathcal{F}_{x}\left\{\frac{\partial^{n} \phi}{\partial x^{n}}\right\}=(i k)^{n} \Phi(k, z, t) \\
& \mathcal{F}_{x}\left\{\frac{\partial^{n} \phi}{\partial z^{n}}\right\}=\frac{d^{n} \Phi}{d z^{n}} \\
& \mathcal{F}_{x}\left\{\frac{\partial^{n} \phi}{\partial t^{n}}\right\}=\frac{d^{n} \Phi}{d t^{n}}
\end{aligned}
$$

Take the Fourier transform of both sides of the first PDE.

$$
\mathcal{F}_{x}\left\{\phi_{x x}+\phi_{z z}\right\}=\mathcal{F}\{0\}
$$

The Fourier transform is a linear operator.

$$
\mathcal{F}_{x}\left\{\phi_{x x}\right\}+\mathcal{F}_{x}\left\{\phi_{z z}\right\}=0
$$

Transform the derivatives with the relations above.

$$
(i k)^{2} \Phi+\frac{d^{2} \Phi}{d z^{2}}=0
$$

Expand the coefficient of Φ.

$$
-k^{2} \Phi+\frac{d^{2} \Phi}{d z^{2}}=0
$$

Bring the term with Φ to the right side.

$$
\frac{d^{2} \Phi}{d z^{2}}=k^{2} \Phi
$$

We can write the solution to this ODE in terms of exponentials.

$$
\Phi(k, z, t)=A(k, t) e^{|k| z}+B(k, t) e^{-|k| z}
$$

We can use the last boundary condition here to figure out one of the constants. Taking the Fourier transform with respect to x of both sides of it gives us

$$
\mathcal{F}_{x}\left\{\lim _{z \rightarrow-\infty} \frac{\partial \phi}{\partial z}\right\}=\mathcal{F}_{x}\{0\} .
$$

Bring the transform inside the limit.

$$
\lim _{z \rightarrow-\infty} \mathcal{F}_{x}\left\{\frac{\partial \phi}{\partial z}\right\}=0
$$

Transform the partial derivative.

$$
\lim _{z \rightarrow-\infty} \frac{d \Phi}{d z}=0
$$

Differentiating Φ with respect to z, we obtain

$$
\frac{d \Phi}{d z}(k, z, t)=A(k, t)|k| e^{|k| z}-B(k, t)|k| e^{-|k| z} .
$$

In order for the boundary condition to be satisfied, we require that $B(k, t)=0$.

$$
\begin{equation*}
\Phi(k, z, t)=A(k, t) e^{|k| z} \tag{1}
\end{equation*}
$$

Take the Fourier transform with respect to x of the boundary conditions at $z=0$ now.

$$
\begin{aligned}
\mathcal{F}_{x}\left\{\phi_{t}+U \phi_{x}+g \eta\right\} & =\mathcal{F}_{x}\left\{-\frac{P}{\rho} \delta(x) e^{\varepsilon t}\right\} \\
\mathcal{F}_{x}\left\{\eta_{t}+U \eta_{x}\right\} & =\mathcal{F}_{x}\left\{\phi_{z}\right\}
\end{aligned}
$$

Use the linearity property.

$$
\begin{aligned}
\mathcal{F}_{x}\left\{\phi_{t}\right\}+U \mathcal{F}_{x}\left\{\phi_{x}\right\}+g \mathcal{F}_{x}\{\eta\} & =-\frac{P}{\rho} e^{\varepsilon t} \mathcal{F}_{x}\{\delta(x)\} \\
\mathcal{F}_{x}\left\{\eta_{t}\right\}+U \mathcal{F}_{x}\left\{\eta_{x}\right\} & =\mathcal{F}_{x}\left\{\phi_{z}\right\}
\end{aligned}
$$

Transform the partial derivatives.

$$
\begin{align*}
\frac{d \Phi}{d t}+U(i k) \Phi+g H & =-\frac{P}{\rho \sqrt{2 \pi}} e^{\varepsilon t} \tag{2}\\
\frac{d H}{d t}+U(i k) H & =\frac{d \Phi}{d z} \tag{3}
\end{align*}
$$

Solve equation (2) for H.

$$
H(k, t)=-\frac{1}{g}\left(\frac{P}{\rho \sqrt{2 \pi}} e^{\varepsilon t}+U i k \Phi+\frac{d \Phi}{d t}\right)
$$

Take a derivative of this with respect to t.

$$
\frac{d H}{d t}=-\frac{1}{g}\left(\frac{P \varepsilon}{\rho \sqrt{2 \pi}} e^{\varepsilon t}+U i k \frac{d \Phi}{d t}+\frac{d^{2} \Phi}{d t^{2}}\right)
$$

Use equation (1) to write expressions for $d \Phi / d t$ and $d^{2} \Phi / d t^{2}$.

$$
\left.\begin{aligned}
\frac{d \Phi}{d t} & =\frac{d A}{d t} e^{|k| z}
\end{aligned} \quad \rightarrow \quad \frac{d \Phi}{d t}\right|_{z=0}=\frac{d A}{d t}, ~\left(\frac{d^{2} \Phi}{d t^{2}}=\left.\frac{d^{2} A}{d t^{2}} e^{|k| z} \quad \rightarrow \quad \frac{d^{2} \Phi}{d t^{2}}\right|_{z=0}=\frac{d^{2} A}{d t^{2}} .\right.
$$

The equations for H and $d H / d t$ become (noting that $\Phi(k, 0, t)=A(k, t)$)

$$
\begin{aligned}
H(k, t) & =-\frac{1}{g}\left(\frac{P}{\rho \sqrt{2 \pi}} e^{\varepsilon t}+U i k A+\frac{d A}{d t}\right) \\
\frac{d H}{d t} & =-\frac{1}{g}\left(\frac{P \varepsilon}{\rho \sqrt{2 \pi}} e^{\varepsilon t}+U i k \frac{d A}{d t}+\frac{d^{2} A}{d t^{2}}\right)
\end{aligned}
$$

Plug these two equations into equation (3) to get an ODE for $A(k, t)$. The right side is obtained by differentiating equation (1) with respect to z and then setting z equal to zero.

$$
-\frac{1}{g}\left(\frac{P \varepsilon}{\rho \sqrt{2 \pi}} e^{\varepsilon t}+U i k \frac{d A}{d t}+\frac{d^{2} A}{d t^{2}}\right)-\frac{U i k}{g}\left(\frac{P}{\rho \sqrt{2 \pi}} e^{\varepsilon t}+U i k A+\frac{d A}{d t}\right)=|k| A
$$

Multiply both sides by $-g$, expand the left side, and combine like-terms.

$$
\frac{d^{2} A}{d t^{2}}+2 U i k \frac{d A}{d t}-k^{2} U^{2} A+\frac{P(U i k+\varepsilon)}{\rho \sqrt{2 \pi}} e^{\varepsilon t}=-g|k| A
$$

Bring the term with $e^{\varepsilon t}$ to the right side and bring $g|k| A$ to the left.

$$
\frac{d^{2} A}{d t^{2}}+2 U i k \frac{d A}{d t}+\left(g|k|-k^{2} U^{2}\right) A=-\frac{P(U i k+\varepsilon)}{\rho \sqrt{2 \pi}} e^{\varepsilon t}
$$

Since we only care about the steady state, we only need a particular solution to this ODE. The inhomogeneous term is $e^{\varepsilon t}$, so the particular solution is of the form $c e^{\epsilon t}$. We determine the constant c by plugging this form into the ODE and solving the resulting equation for it. Doing so yields

$$
A(k, t)=-\frac{P(U i k+\varepsilon)}{\rho \sqrt{2 \pi}\left[g|k|-(k U-i \varepsilon)^{2}\right]} e^{\varepsilon t},
$$

so from equation (1) we know what $\Phi(k, z, t)$ is. Factor i from the numerator.

$$
\begin{equation*}
\Phi(k, z, t)=\frac{i P e^{\varepsilon t}}{\rho \sqrt{2 \pi}} \frac{U k-i \varepsilon}{(U k-i \varepsilon)^{2}-g|k|} e^{|k| z} \tag{4}
\end{equation*}
$$

To obtain $\phi(x, z, t)$, take the inverse Fourier transform of $\Phi(k, z, t)$. It is defined as

$$
\mathcal{F}^{-1}\{\Phi(k, z, t)\}=\phi(x, z, t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \Phi(k, z, t) e^{i k x} d k
$$

Therefore,

$$
\phi(x, z, t)=\frac{i P e^{\varepsilon t}}{2 \pi \rho} \int_{-\infty}^{\infty} \frac{U k-i \varepsilon}{(U k-i \varepsilon)^{2}-g|k|} e^{|k| z+i k x} d k
$$

To solve for H, use equation (3). Differentiate equation (4) with respect to z and set z equal to zero to obtain the right side.

$$
\frac{d H}{d t}+U i k H=\frac{i P|k|}{\rho \sqrt{2 \pi}} \frac{U k-i \varepsilon}{(U k-i \varepsilon)^{2}-g|k|} e^{\varepsilon t}
$$

As explained before, we only care about the steady state, so we only need a particular solution of this equation. The inhomogeneous term is $e^{\varepsilon t}$, so the particular solution will have the form $d e^{\varepsilon t}$. Substitute this form into the ODE for H to get an equation for the constant d. The particular solution is

$$
H(k, t)=-\frac{P|k|}{\sqrt{2 \pi} \rho\left[g|k|-(U k-i k)^{2}\right]} e^{\varepsilon t} .
$$

Now that we have $H(k, t)$, we can get $\eta(x, t)$ by taking the inverse Fourier transform of it. Therefore,

$$
\eta(x, t)=\frac{P e^{\varepsilon t}}{2 \pi \rho} \int_{-\infty}^{\infty} \frac{|k| e^{i k x}}{(U k-i \varepsilon)^{2}-g|k|} d k .
$$

